ByteScout Cloud API Server is the ready to deploy Web API Server that can be deployed in less than thirty minutes into your own in-house Windows server (no Internet connnection is required to process data!) or into private cloud server. Can store data on in-house local server based storage or in Amazon AWS S3 bucket. Processing data solely on the server using built-in ByteScout powered engine, no cloud services are used to process your data!.
On-demand (REST Web API) version:
Web API (on-demand version)
On-premise offline SDK for Windows:
60 Day Free Trial (on-premise)
""" Cloud API asynchronous "PDF To Text" job example. Allows to avoid timeout errors when processing huge or scanned PDF documents. """ import os import requests # pip install requests import time import datetime # Please NOTE: In this sample we're assuming Cloud Api Server is hosted at "https://localhost". # If it's not then please replace this with with your hosting url. # Base URL for PDF.co Web API requests BASE_URL = "https://localhost" # Direct URL of source DOC file. SourceFileURL = "https://bytescout-com.s3.amazonaws.com/files/demo-files/cloud-api/doc-to-pdf/sample.docx" # Destination PDF file name DestinationFile = ".\\result.pdf" # (!) Make asynchronous job Async = True def main(args = None): convertDocToPDF(SourceFileURL, DestinationFile) def convertDocToPDF(uploadedFileUrl, destinationFile): """Converts DOC To PDF using PDF.co Web API""" # Prepare URL for 'DOC To PDF' API request url = "{}/pdf/convert/from/doc?async={}&name={}&url={}".format( BASE_URL, Async, os.path.basename(destinationFile), uploadedFileUrl ) # Execute request and get response as JSON response = requests.get(url, headers={ "content-type": "application/octet-stream" }) if (response.status_code == 200): json = response.json() if json["error"] == False: # Asynchronous job ID jobId = json["jobId"] # URL of the result file resultFileUrl = json["url"] # Check the job status in a loop. # If you don't want to pause the main thread you can rework the code # to use a separate thread for the status checking and completion. while True: status = checkJobStatus(jobId) # Possible statuses: "working", "failed", "aborted", "success". # Display timestamp and status (for demo purposes) print(datetime.datetime.now().strftime("%H:%M.%S") + ": " + status) if status == "success": # Download result file r = requests.get(resultFileUrl, stream=True) if (r.status_code == 200): with open(destinationFile, 'wb') as file: for chunk in r: file.write(chunk) print(f"Result file saved as \"{destinationFile}\" file.") else: print(f"Request error: {response.status_code} {response.reason}") break elif status == "working": # Pause for a few seconds time.sleep(3) else: print(status) break else: # Show service reported error print(json["message"]) else: print(f"Request error: {response.status_code} {response.reason}") def checkJobStatus(jobId): """Checks server job status""" url = f"{BASE_URL}/job/check?jobid={jobId}" response = requests.get(url) if (response.status_code == 200): json = response.json() return json["status"] else: print(f"Request error: {response.status_code} {response.reason}") return None if __name__ == '__main__': main()
See also:
Get Your API Key
See also: