Ultimate List of Data Science Tools in 2019 - ByteScout
  • Home
  • /
  • Blog
  • /
  • Ultimate List of Data Science Tools in 2019

Ultimate List of Data Science Tools in 2019

Data science is the most important thing in today’s world. It has become a crucial part of many businesses like agriculture, marketing, risk control, fraud discovery, retailing analytics and common policy among others. Here is the ultimate list of data science tools.

Apache Hadoop

Apache Hadoop is an open source data science tool/framework which allows users to store and manage large scale data-sets on clusters of stock hardware. Hadoop gives huge storage for any sort of data, monstrous processing capacity and the capability to manipulate implicitly infinite coexisting assignments or jobs. Hadoop is an Apache design being developed and utilized by a global community of patrons and users. It is authorized under the Apache License 2.0.

Hadoop advantages:

  • HDFS — It is a Hadoop Distributed File System which is used to work with enormous scale bandwidth.
  • MapReduce — It is an extremely configurable model for Big Data processing
  • YARN — It is a source scheduler for Hadoop source control.
  • Hadoop Libraries — The most remarkable tool which allows third-party modules to operate with Hadoop.


Keras is a deep learning library formulated in Python. It operates on TensorFlow providing a quick application. Keras was formed to create deep learning models simpler and assisting users to manage their data logically in an effective method.

Keras is an open source library and it is proficient of working on top of TensorFlow, Microsoft Cognitive Toolkit, or Theano. Created to allow quick experimentation with deep neural networks, it concentrates on being user-friendly and flexible. The great thing about this data science tool is that operates smoothly on CPU and GPU. Examples are illustrated in the Python code, which is small, simpler to debug, and provides security of extensibility.


OpenRefine is one of the most popular data science tools. Previously known as Google Refine, it is one of the essential tools users need to analyze big data. Open Refine also enables users to carry and examine various big data file setups and convert a particular file into another.

Open refine has numerous compelling characteristics that any data scientist may demand; as it provides clustering, editing blocks with added values, prolonging web services. It also permits users to connect among several datasets. In OpenRefine there’s the idea of a workspace comparable to that in Eclipse. When users operate OpenRefine it handles outlines within a particular workspace, and the workspace is included in a file index with sub-directories.


Seahorse is one of the powerful tools for a data scientist. It enables users to build composite dataflows for ETL (Extract, Transform and Load) and machine learning without writing any code. It also gives through its simplistic interface a simple to learn the process to unlock big data queries. It gives an optical programming strategy, where the user can investigate and understand the essence of the condition and the reasoning behind the interpretation. Although Seahorse is lacking any responsibility to write code, still one can customize a set of operations using Python or R.

It also illustrates the application workflow like a chart through its manageable and reliable web-based interface. This tool is powered by Apache Spark. Seahorse’s amazing value proposal is that it swiftly and efficiently enables the user to get the utility of great throughput inclinations with current data processing by building Spark applications without drafting a particular code.


Orange is an open source tool which comes under amazing big data mining tools. Orange is one tool amongst data science tools that guarantees to present data science in an effective and efficient manner. It holds things enjoyable for data scientists. It permits users to examine and visualize data without the requirement to code. It gives machine learning opportunities for newcomers.

The great thing about this tool is that it offers manageable data analysis with innovative data visualization. It also explores statistical patterns, box designs and scatter plots, or jump farther with decision trees, hierarchical clustering, heatmaps, MDS and linear ridges. Orange is one of the best data visualization tools. Orange is all about data visualizations that support to reveal obscure data patterns. It also gives foreknowledge after data analysis methods or aid information between data scientists and domain specialists.


TensorFlow is one amazing data science tool which revolves around advanced machine learning. In other words, it is one software library for mathematical reckoning and it is created for everyone from learners to researchers. It enables programmers to obtain the power of deep learning without requiring to know some of the complex sources behind it and stands as one of the best data science tools that allow deep learning available.

Originally created by technicians from the Google Brain team within Google’s AI group, it arrives with solid maintenance for machine learning and deep learning and the manageable mathematical calculation focus is applied over several other experimental realms.


Weka is one of the best open source big data tools. It is a compilation of machine learning algorithms for data mining assignments. It comprises tools for data development, analysis, regression, clustering, correlation commands mining, and visualization.

It is written in Java by The University of Waikato. It is utilized for data mining, enabling users to manage large sets of data. Some of the peculiarities of Weka involve preprocessing, analysis, regression, clustering, operations, workflow, and visualization. One purpose of the Weka is to present users with the chance to execute machine learning algorithms without having to trade with data import and evaluation concerns. When a classifier has been composed as a Java class that fulfills a pair of regular programs described in the Weka structure, all the good things that occur with Weka are automatically applied to it, and it will automatically be displayed in Weka’s graphical user interfaces.


MongoDB is a NoSQL database recognized for its scalability and a great show. It gives a robust choice to conventional databases and executes the assimilation of data in particular applications simpler. It can be an indispensable part of the data science toolkit if a user is trying to create large-scale web apps.

The great thing about MongoDB is that it is created for advanced data, and it instantly accommodates to the developments of any business. It stores data in compliant, JSON-like records, indicating domains can alter from record to record and data structure can be modified over time. It outlines to the things in any application system, securing data comfortable to work with.

You can find even more splendid tools for data extraction and data science at FitSmallBusiness.


About the Author

ByteScout Author

Prasanna Peshkar

Prasanna is an independent cybersecurity consultant and technical writer, focusing on penetration testing and vulnerability assessment. He provides penetration testing services to a wide variety of clients, including financial institutions, brokerage firms, professional regulators, manufacturing companies and transportation companies.