Data Matrix: History, Advantages, Limitations, Usage - ByteScout
Announcement
Our ByteScout SDK products are sunsetting as we focus on expanding new solutions.
Learn More Open modal
Close modal
Announcement Important Update
ByteScout SDK Sunsetting Notice
Our ByteScout SDK products are sunsetting as we focus on our new & improved solutions. Thank you for being part of our journey, and we look forward to supporting you in this next chapter!
  • Home
  • /
  • Blog
  • /
  • Data Matrix: History, Advantages, Limitations, Usage

Data Matrix: History, Advantages, Limitations, Usage

Data Matrix is a type of 2-D barcode with very high data density and can encode a large amount of data. Data Matrix consists of a random sequence of black and white pairs. Data matrix code type can encode the text, as well as raw data. The range of the data encoded by the Data matrix usually lies between a few bytes up to 2 kilobytes. With this data storage space, approximately 2,335 alphanumeric characters can be encoded by a data matrix symbol. Data Matrix coding standard is widely used in Europe and the United States for information encoding.

  1. History
  2. Structure
  3. Purpose
  4. Advantages
  5. Limitations
  6. Usage
  7. Categories
  8. Comparison Between Data Matrix and QR Code

RPA in Electrical Engineering

History

ID Matrix is credited as being the inventor of the Data Matrix barcode around 2005. ID Matrix, later on, merged into RVSI Acuity ciMatrix, Siemens Energy and automation acquired RVSI Acuity ciMatrix in October 2005 and then by Microscan Systems in September 2008.

Data Matrix codes are regulated today by several ISO/IEC standards. It is in the public domain for many applications, which means it can be used free of any licensing or royalties.

Structure

Data Matrix is a two-dimensional symbology hence appears in two basic shapes. Either a square between the sizes of 10×10 up to 144×144 modules in even steps or a rectangle between the size of 8×16 up to 16×48.

The size and shape of the symbol are usually chosen either automatically or by the user. Often, the smallest size is preferred, so there is enough data to encode the given data. The symbol rectangle is built up by square dots whose size module is also user-specified. A Data Matrix can even be small enough to fit on a pinhead!

The symbol is mounted on a square grid, that has a finder pattern encompassing the edges of the symbol to allow a scanner to identify the barcode. The finder pattern makes it possible to read the barcode regardless of the physical orientation of the code.

Purpose

Like other 2-D barcodes, the basic purpose of developing the Data Matrix code type was to design a barcode that is denser and can accommodate a large amount of data, which is extremely secure with built-in error correction and higher fault tolerance mechanism. All of these objectives have been met by the Data Matrix bar code and incorporated into the design.

The most widespread use for Data Matrix is labeling small items, due to the code’s ability to encode fifty characters in a graphic symbol at 2 or 3 millimeters. Additionally, the code can be read with an estimated 20% contrast ratio. It is no wonder that Data Matrix codes are often used in the food industry in autoencoding systems to prevent food products from being packaged and dated incorrectly.

These unique codes are managed internally on a food manufacturer’s database and used for each subsequent product run. The symbol should be in an optimal scanning position. Other industries that use Data Matrix include the manufacturing of pharmaceutical items, electronics, and medical devices.

Advantages

  • Similar to contemporary 2-D codes, Data Matrix can store a large amount of data with minimum space utilization,
  • It has a built-in error correction mechanism. It uses the ECC200 error correction code for error correction purposes.
  • Extremely high fault tolerance and can be decoded even if a substantial amount of code is damaged.
  • It has a lower resolution, which is adequate for the scan readability in any position, unlike barcodes that require high resolutions of at least 80%.

Limitations

There is only one major limitation of Data Matrix barcodes. Users have to have a laser scanner or CCD cameras in order to correctly scan and encode information stored in these barcodes, it cannot be scanned by a simple scanner. Factors affecting data matrix imagers can also cause limitations. Imagers regularly require that the barcode is close to the lens. Generally, distance considerations should be in the 2-12″ range. However, exceptional lensing can increase this range. Some linear barcode scanners can accurately decode at intervals up to 120″.

Due to a large amount of processed information, data matrix imagers cannot decode at the same rates as linear barcode scanners. Also, while most imagers contain internal light sources to illuminate the barcode, they may function at subpar levels because of shallow contrast, specular reflection, or causes for image blur.

Usage

The most widespread use for Data Matrix is labeling small items, due to the code’s ability to encode fifty characters in a graphic symbol at 2 or 3 millimeters. Additionally, the code can be read with only a 20% contrast ratio. It is no wonder that Data Matrix codes are often used in the food industry in autoencoding systems to prevent food products from being packaged and dated incorrectly.

These unique codes are managed internally on a food manufacturer’s database and used for each subsequent product run. The symbol should be in an optimal scanning position. Other facts about data matrix usage include the following:

  • Data matrix code is widely used in the automotive part making industry as well as for laser marketing.
  • In the aerospace equipment manufacturing industry, data matrix code is widely used on airplane parts. Air Transport Association (ATA) recommends the use of the Data Matrix barcode to its members.
  • Data Matrix is used on digital postage stamps recognized by Deutsche Postal Service.
  • Mobile marketing has also adopted Data Matrix code and it is known as SemaCode in mobile applications.
  • EIA (Electronics Institute of America), highly recommends the use of Data Matrix code in order to label small to medium-sized electronics equipment.
  • Data Matrix code is inscribed on medical and surgical equipment.
  • Data Matrix codes are also the manufacturing of pharmaceutical items.

Categories

In general, there are two categories of a data matrix, which are the Data Matrix ECC 000-140 and Data Matrix ECC 200.

Data Matrix ECC 000-140

Data Matrix ECC 000 to 140 are considered the older versions. All these versions have error correction systems based on convolution. In addition, each of these versions offers a different error correction capacity. However, ECC 000 provides no error correction, while ECC 140 offers the most correction. A CRC (cyclic redundancy check) is encoded on each bit pattern so that error detection can be conducted during decoding. Similarly, tables containing bit-placement instructions are used to encode each bit. In addition, the modules of these data matrixes are always odd.

Data Matrix ECC 200

ECC 200 offers users a newer version of a data matrix. Unlike the older version, the ECC 200 conducts erasure recovery and error correction using Reed-Solomon codes. Therefore, the data stored within can be accurately encoded if damage to the data matrix does not exceed 30%. Therefore, the ECC 200 has a significant advantage over the older versions.

Comparison Between Data Matrix and QR Code

A data matrix and a QR code are both used to store information. Each technology offers a simple yet effective way of transmitting data. However, there are several similarities and differences between these tools.

Similarities

The Data Matrix and QR code are both 2-dimensional barcodes. Information can be stored in any of these technologies vertically and horizontally in pixels. As such, a lot of information can be stored within either of these technologies. Likewise, either of these codes can be read by a scanner in different directions. Also, damage to these 2-D barcodes does not prevent access to the stored information.

Differences

Although a data matrix and a QR code are similar, there are several differences between them. Presented below are some of these differences.

  • A data matrix uses the L structure at the bottom and left of its square. this structure can store 2335 alphanumeric characters. In addition, the pixel stands at 10×10, which makes it portable. Therefore, the smaller size of the data matrix code makes it ideal for use on small items and labels.

On the other hand, the QR code has 4 black and white squares at every corner. This structure can store a maximum alphanumeric character of 4196. However, 7089 numeric characters can be stored in a numeric combination when required. Therefore, the large storage capacity of a QR code makes it suitable for use on large items. Similarly, it is easier to read with a smartphone or barcode scanner.

  • Error correction level also varies between these barcodes. A data matrix has a maximum error correction rate of 30%. As such, you can recover information stored on this technology as long as it is not damaged beyond 30%. This percentage is automatically determined during encoding.

The QR code has a different error correction level setting. The value can be manually selected when encoding information on the barcode. However, the higher the percentage, the less storage available.

Conclusion

Data Matrix codes are considered the smallest and most compact of all the bar code types. If you want to store a large amount of data in a barcode, Data Matrix is the most recommended barcode type. It can be easily generated with Bytescout BarCode SDK and read with BarCode Reader SDK.

   

About the Author

ByteScout Team ByteScout Team of Writers ByteScout has a team of professional writers proficient in different technical topics. We select the best writers to cover interesting and trending topics for our readers. We love developers and we hope our articles help you learn about programming and programmers.  
prev
next